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ABSTRACT 

In a GPS-denied environment, one of the possible selections for navigating an 

unmanned ground vehicle (UGV) is through real-time visual odometry. To navigate in 

such an environment, the UGV needs to be able to detect, identify, and relate the static 

and dynamic objects such as trucks, motorbikes, and pedestrians in the on-board camera 

field of view. Therefore, object recognition becomes crucial in navigating UGVs. 

However, object recognition is known to be one of the challenges in the field of computer 

vision. Current analytic video software inadequately utilizes heuristics like size, shape, 

and direction to determine whether a detected object is a human, a vehicle, or an animal. 

This thesis explores another approach, the deep-learning technique, which makes use of 

neural networks based on vast collections of training data images. This thesis follows a 

systems engineering approach in analyzing the need and suggesting a solution. It shows 

how to create and train the aforementioned networks using just three objects: a chair, a 

table, and a car. A Pioneer UGV equipped with the corresponding sensors is then used to 

test the developed algorithms. The preliminary analysis conducted in this thesis shows 

good potential for using the deep-learning technique on future UGVs. 
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EXECUTIVE SUMMARY 

This thesis explored the applicability of deep-learning technology for relative 

object-based navigation in an urban environment with a degraded GPS signal. In such a 

critical mission, using just GPS, static sensors and map data as the navigation tool is not 

sufficient. There is a need to involve additional sensors including cameras. The optical 

sensor is a popular choice as it can collect tremendous amounts of information such as 

live video feeds, video recording, capture static image, video analytics and object 

recognition. This information aids the UGV and operators in understanding the 

environment and planning/ adjusting the course of actions. 

This thesis follows systems engineering procedures to develop a deep-learning 

based system and test it in a series of representative test cases. The deep-learning 

technology explored in this thesis is a subset of machine learning. It utilizes 

convolutional neural network (CNN) to learn the image features automatically from large 

repository of training image dataset. There are three techniques that can be successfully 

deployed for CNN on image classification and this thesis used one of them, the transfer 

learning approach. This approach happens to be more practical to use with an existing 

pretrained model such as Alexnet to improve the image classification accuracy due to 

small training data. 

This research utilized a Pioneer UGV with an on-board day camera to conduct the 

test the developed deep-learning algorithm. The test case consisted of three different 

types of test scenarios with three different types of training images datasets. The three 

test scenarios are identification of a single object which consist of both indoor and 

outdoor environment test, identification of multiple homogeneous objects and 

identification of multiple heterogeneous objects. Besides that, three different types of 

training images dataset were setup for each of the test scenarios to compare the system 

accuracy. The three different types of training images dataset are 20 training images, that 

original 20 plus new 20 training images, and 39 training images from an earlier dataset 

plus 1 image of the actual scene. Ten test cycles run were conducted for each test 

scenario to validate that the system was able to provide consistently good results.  



 xvi 

Based on the conducted research, the results shows that the accuracy of the deep-

learning based system improve with the increase of training images in the dataset. In 

addition, the test with 39 training images from earlier dataset plus 1 image of the actual 

scene has obtained the best overall best results. The results demonstrate that there is a lot 

of potential in this research for future work. 
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I. INTRODUCTION 

A. BACKGROUND 

Unmanned ground vehicles (UGVs) have made major leaps in the use of military 

technology for modern urban warfare. Technology advancement has enhanced their 

capability to provide aid and to complete tasks that are deemed too risky or mundane for 

the solders in war (Snider and Simon 2016). Those tasks include intelligence, 

surveillance, and reconnaissance (ISR), explosive ordinance disposal (EOD), and search 

and rescue operation. The UGV can handle those tasks in place of a human to minimize 

the exposure of danger to soldiers (Hanlon 2005). Figure 1 displays the UGV’s family of 

systems (FOS) that supports the U.S. military combating units such as Airforce, Army, 

Navy, and others (Winnefeld and Kendall 2011, 22). 

 

Figure 1.   UGVs FOS. Source: Winnefeld and Kendall (2011, 22).  
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From Winnefeld and Kendall (2011), the U.S. military deployed up to 8,000 

UGVs for the Operation Enduring Freedom and the Operation Iraqi Freedom. These 

UGVs had completed more than 125,000 missions such as EOD, object identification, 

and others, as recorded in September 2010 (James A and Kendall 2011, 22). Further, the 

UGVs have effectively assisted U.S. military to detect and destroy more than 11,000 

EODs (Winnefeld and Kendall 2011, 23). With the global military technology landscape 

changing at an unprecedented pace, there is a need to constantly update its defense 

capabilities such as technological advancement and tactical changes. Therefore, it is 

important to study and analyze the applicability of upcoming technological trends to stay 

ahead of potential vulnerability.  

1. Technological Advancement 

Although different sensors have been deployed for UGV application, which has 

led to a varied spectrum of solutions. In the last three decades, there is vast research into 

visual navigation for mobile robots. Vision system is small which can be easily installed 

on space limited mobile robots. It also provides situation awareness of the event with 

either live video streaming or by image capture (Bonin-Font et al. 2008). To reduce the 

workload of the operators, video analytics was implemented in the vision system. The 

video analytics primarily assist in tracking objects and making heuristic guesses of an 

object’s position. 

By contrast, deep learning technology makes use of convolutional neural network 

that learn from large training data to achieve highly accurate in object classification. The 

increase in the accuracy of object detection and recognition to aid UGV navigation helps 

human operators to make the critical decisions and even to take control of critical events 

(National Research Council 2002, vii).  

2. Tactical Changes 

There has been a shift in combat emphasis from head-on conventional war to low 

unit unconventional tactics; also there has been a shift in operating terrain from vegetated 

to urbanized theaters. Modern warfare and peacekeeping missions are now much more 

likely to take place in a built-up city. The UGV enables a force to handle a mission with 
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fewer personnel, is capable of a more rapid deployment, and is easier to integrate into 

future digital battlefields. There has been little progress made in navigation through urban 

areas without human intervention (National Research Council 2005, 135). Even if there 

are good maps and a GPS receiver, urban navigation is always a challenge. There is 

always a limitation to the accuracy for both GPS and maps. For example, the GPS map 

developers may have to illustrate landmark features too for narrow roads and alleys so 

not clearly visible on maps (Glenn and Kingston 2005, 49). 

During a tactical operation in an urban environment, navigation of UGV using 

GPS is challenging. There is a need to have redundancy to support or back up the GPS. 

Equipment such as static sensors, camera sensors, laser scanners can be considered. 

(Bonnifait et al. 2008, 84). The camera sensor is a popular choice as it is capable of 

collecting tremendous amounts of information for the unmanned system. An image 

capture provides many features that aid the UGV in understanding the environment and 

planning its next course. This thesis studies the applicability of using camera sensor 

harnesses with deep learning based methods to make improvements in accuracy and to 

make quick decisions in real time applications for UGV navigation.  

B. USING ELECTRO-OPTICAL/INFRARED SENSORS 

An electro-optical (EO) sensor (see Figure 2) operates like a camera that can be 

used to detect, recognize and identify objects such as human, vehicles, building and 

others in a long distance expecially at poor illumination environment (Keller 2013). The 

most commonly deployed EO sensors are image intensifier and thermal imager. Both EO 

sensors are able to operate in the day and night condition especially total darkness 

condition. There are two types of image intensifiers, the passive image intensifier and the 

active image intensifier (Kruegle 2011, 472). The passive image intensifier makes use of 

the natural illumination such as sun, moon, stars, and others to identify an object throught 

the object’s reflection (Kruegle 2011, 472). Whereas the active image intensifier emits 

invisible infra red enegy on the objects to identify the objects (Kruegle 2011, 472). The 

thermal imager identify an object through its emited radiation (Kruegle 2011, 469). 
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Figure 2.  Picture of EO Camera for UGVs. Source: FLIR (2017). 

The EO sensors provide situation awareness and useful information to infer the 

operation condition and understand the environment (Winnefeld and Kendall 2011, 47). 

This information can be fused with other static sensors to support the UGVs and 

operators on decision-making, identification, and tracking of threats (Winnefeld and 

Kendall 2011, 49). Figure 3 shows a picture of UGV mounted with an EO sensor.  

 

Figure 3.  Picture of UGV with EO Camera. Source: Studies Board and National 
Research Council (2005). 
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C. DEEP-LEARNING PARADIGM 

Artificial intelligence, or AI, is the development of intelligent and user friendly 

applications to help humans solve problems efficiently. Artificial intelligence has evolved 

into many new areas of technology that can be integrated together to form a larger-scale 

system. It consists of many capabilities such as machine learning, speech recognition, 

optical character processing, and others (Norvig et al. 1995).  

(1) Machine Learning  

Machine learning (see Figure 4) is a subfield of AI that involves several scientific 

domains including mathematics, computer science, physics, and biology (Schapire 2008, 

1). It can automatically find natural patterns, learn and make predictions from the 

collected information stored in the database (Murphy 2014, 1). The learning algorithms 

adaptively improve the output results with computational methods to make accurate 

predictions. Thus, it produces an output to help humans to make better decisions (Murphy 

2014, 1).  

The learning algorithm in machine learning makes use of manual feature 

extraction such as edges or corners and historical information to label images or 

recognize voices. Machine learning is fundamentally related to data analysis and 

statistics; therefore, the accuracy of the results depends on the quality of information 

provided and sample size of the information (Mohri et al. 2014, 1).  

 

Figure 4.  Machine Learning Workflow. Source: John (2017, 5). 
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The user is able to utilize the collected information to redefine the parameters of a 

system or model to optimize the solution. Besides that, it can use historical data to make 

predictions. Some of the applications for which machine learning can be deployed 

include: 

• text or document classification 

• natural language processing 

• speech recognition 

• optical character recognition 

• computer vision such as image recognition and face detection 

• autonomous vehicle navigation 

(2) Deep-Learning 

There is a smaller subcategory of machine learning called deep-learning. Deep-

learning (see Figure 5) automatically extracts image features from large repository of 

training image dataset (Vinciarelli and Camastra 2015). The repository of training image 

dataset enables the machines to learn to classify the test images automatically. In short, 

the deep learning software would learn to recognize images that contain an object such as 

a car, without knowing what a car looks like (Marr 2016).  

Deep-learning skips the manual step of extracting features from the images to 

classify the data, as opposed to most traditional machine learning algorithms, which 

require intense time and effort. However, deep-learning requires a few thousand images 

to get reliable results. Besides that, it requires a high performance GPU so that the system 

requires less time to analyze. 
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Figure 5.  Deep-Learning Workflow. Source: John (2017, 5). 

Deep-learning technology mainly makes use of a neural network architecture. The 

term “deep” refers to the hidden layers in the neural network. In the traditional neural 

network, it contains only two to three hidden layers, while the recent deep networks have 

as many as 150 (Mathworks 2017a). It is suited for image recognition to improve human 

problems such as optical character recognition, facial recognition, and many advanced 

driver assistance technologies such as autonomous driving, autonomous parking, and 

others. Table 1 shows the differences between machine learning and deep-learning. 

 Differences between Machine Learning and Table 1.  
Deep-Learning Technology 

 Machine Learning Deep-Learning 
Technology 

Training database Small Large 

Features Yes No 

No. of Classifiers 
available 

Many No 

Training time Short Few 

Accuracy Accurate Highly Accurate 
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D. PROBLEM STATEMENT  

Unmanned systems are still susceptible to technological limitations such as 

unstable communication and limited operating range. In an urban environment, there is 

high chance of GPS signal interruption due to physical structures such as concrete and 

steel walls, climate, and other factors including electromagnetic compatibility (EMC), 

electromagnetic interference (EMI) or media hub that may affect the UGV operations. 

Therefore, it is a challenge to receive consistent GPS and communication signals in the 

urban terrain (Glenn and Kingston 2005, 91). Over-reliance on communication 

technology only, including satellite communications that serve the GPS, will have 

significant operational risk (Blackburn et al. 2001, 92). Therefore, there is a need to 

explore technology and operational solutions that capitalize upon local autonomy and 

reduce communication requirements. The objective of this thesis is to explore 

applicability of deep-learning technology for UGV navigation in a GPS-degraded 

environment. 

E. RESEARCH QUESTIONS 

This thesis addresses the following research questions: 

1. Can deep-learning technique that makes use of the preliminary trained 

neural networks be reliable in detecting and recognizing static and 

dynamic objects? 

2. Can cognitive object recognition/classification aid in navigation of UGV? 

3. Can cognitive object recognition/classification aid operators to make 

better decisions over the control of UGV navigation? 

F. ORGANIZATION OF THESIS 

To address the problem formulated in Section D, this thesis is structured in five 

chapters. After this background chapter, Chapter II highlights the software design and 

implementation, followed by Chapter III presenting on the system design. Chapter IV 

discusses the results of the experiment and challenges that were conducted using a 

Pioneer UGV. Chapter V concludes the work and provides some recommendations. 
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II. SOFTWARE DESIGN 

This chapter explores and analyzes the development of the following software 

algorithm for graphical user interface (GUI), deep learning technique and cascade object 

detector to aid the operators on UGV navigation. These three software algorithms shall be 

further described in the following sections. 

A. GRAPHICAL USER INTERFACE 

GUI development environment (GUIDE) is a feature in the MATLAB that allows 

the software developer to design and develop a user-friendly GUI for the operators. 

GUIDE provides various interactive buttons and controls that the operators are able to 

start/stop streaming of live video feed, capture, display and save images to the storage. 

The GUI provides the operators situation awareness by showing the field of view of the 

cameras. In addition, the captured image will undergo image recognition using deep 

learning technique and display the captured image with object name to aid the operators 

in making decisions on the command and control of the UGV (see Figure 6).  

 

Figure 6.  Graphical User Interface (GUI) 
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B. DEEP-LEARNING TECHNIQUE 

The convolutional neural network (CNN) is one of the machine learning 

algorithms that can be found in deep-learning. (Mathworks 2017a). It automatically 

extracts features from a large collection of images for image classification and object 

detection (Mathworks 2017a). At the current state of research, there are three techniques 

that can be successfully deployed for CNN on image classification. Table 2 describes the 

three different types of CNN techniques. 

 CNN Techniques. Source: Shin et al. (2016). Table 2.  

S/N CNN Techniques Analysis 

1 Training the CNN from scratch To create a new convolution network, 
it requires a large dataset which is 
challenging, time consuming and 
ineffective to build.  

2 Using existing pretrained features Using off-the-shelf pretrained features 
to perform image classification using 
CNN. 

3 Transfer learning approach  Transfer learning makes use of 
existing pretrained features to transfer 
of the knowledge or learned features 
to solve a new problem. Developed 
with small training data, it is more 
practical to use an existing pretrained 
model to improve the image 
classification accuracy. In addition, 
the training can be completed faster as 
it only take the last few layers from 
pretrained network and fine-tuned to 
learn the features of the new image 
collection.  
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There are many off-the-shelf pretrained networks available such as VGG-16, 

VGG-19, GoogleNet, and Alexnet. Alexnet is one of the most popular pretrained 

networks which has proven to obtain significantly good results over the video analytics 

methods especially in the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) 2012 (Krizhevsky et al. 2012). The good results has garner lots of interest in 

deep-learning technology, thus it has been selected to fine-tune the system in this 

research. The Alexnet is one of the most studied CNN which comprises of feature 

learning and classification (Redmon and Farhadi 2016). Figure 7 depicts the workflow of 

input test image passing through the convolution layers, pooling layers, and fully-

connected layers (John 2017, 12). It has 1.2 million of images with resolution of 256 x 

256 pixels in the dataset and, up to 1000 image categories available for classification of 

objects (Shin et al. 2016). Figure 8 reflects the workflow on classification of test image 

using transfer learning approach. 

 

Figure 7.  Convolution Neural Networks Workflow. Source: John (2017, 12). 



 12 

 

Figure 8.  Workflow on Classification of Test Image using Transfer 
Learning Approach 

Figure 9 illustrates the Matlab command on downloading the pretrained network, 

Alexnet, and specifying the folder that store the pretrained network. 

 

Figure 9.  Matlab Command on Downloading of Pretrained Network, Alexnet. 
Source: Mathworks (2017b). 
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Figure 10 shows the Matlab command to illustrate the architecture of the CNN. 

The Matlab output displays the number of layers in the CNN (Mathworks 2017b). The 

sequence of layers is align with the earlier discussion (see Figure 7) on the workflow of 

input test image passing through the convolution layers, pooling layers, and fully-

connected layers (Mathworks 2017b). 

 

 

Figure 10.  Matlab Command on the Architecture of CNN 

This thesis focuses on three different types of training images datasets to compare 

the system accuracy, as shown in Table 3.  
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 Three Different Types of Image Datasets Table 3.  

Types of training datasets Description 

Dataset with 20 training images Collection of 20 training images each of 
predefined categories. 

Dataset with original 20 plus new 20 
training images 

Collection of original 20 plus 20 new 
training images each of pre-defined 
categories. 

Dataset with 39 training images from 
above plus 1 image of the actual scene  

Collection of 39 training images from the 
above plus 1 image taken from an actual 
scene with the object of interest. 

 

The training images dataset are specifically targeting on five types of categories 

(see Figure 11). The five types of categories are Chair, Table, Car, Cat, and Dog. 

Figure 12 displays the number of training images in each of the five categories. 

 

Figure 11.  Matlab Command on Specifying Five Types of Categories 

 

Figure 12.  Number of Training Images in Each of the Five Categories 
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The CNN algorithm can only process red, green blue (RGB) images with 

dimension of width at 227 pixels and height at 227 pixels (Mathworks 2017b). Figure 13 

details the extraction of the training features such as edges and blobs from the training 

images to train the software algorithm. 

 

Figure 13.  Matlab Command on Extraction of Training Features 
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In Figure 14, the algorithm extracts the features from the test image and allows it 

to make a prediction on classifying the test image (Mathworks 2017b). The accuracy is 

the measure on classifying the test image correctly.    

 

Figure 14.  Matlab Command on Extraction of Test Features 
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C. CASCADE-OBJECT DETECTOR 

The developed deep learning algorithm is unable of provide accurate bounding 

box on the recognize objects; therefore, cascade-object detector was explored. It is 

another method of learning-based solution which makes use of large collection of both 

positive and negative images to train system on detection and recognized object with 

bounding box (Mathworks 2017c). The training images will be processed under cascade 

classifier to label the object of interest (Mathworks 2017c). There are multiple training 

stages in the cascade classifier to reduce the false negative rate on incorrectly labeling the 

objects (Mathworks 2017c). Figure 15 describes the workflow of cascade-object detector. 

Figure 16 is an example of a recognized object with bounding box. 

 

Figure 15.  Cascade-Object Detector Workflow. Source: Mathworks (2017c). 

 

Figure 16.  Recognized Object with Bounding Box 
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III. SYSTEM DESIGN 

This chapter details the overall architecture, hardware and software, to be carried 

out for this research.  

A. HARDWARE  

1. Pioneer UGV 

The 12 kg Pioneer UGV as shown in Figure 17 is a robot with two-wheel and 

two-motor differential drive. It is best suited for research and experiment for an indoor 

laboratory. The 0.5 m width robots with 0.2 m diameter drive wheels is used for research 

due to its versatility, reliability and durability. It has an endurance of up to four hours 

with a forward speed of 0.7m/s. It is capable of carrying up to 30 kg payload if it is 

maneuvering at slow speed on a flat terrain. The baseline UGV is equipped with a 

computer running on the Linux Ubuntu 14.04 operating system with the robot operating 

system (ROS) packages that generate the command for maneuvering the UGV. 

The Microstrain sensor (P/No: 3DM-GX3 -45) was installed on all the Pioneer 

UGVs that have a GPS-aided Inertial Navigation System (IMU/GPS). It combines the 

MEMs inertia sensors with the embedded GPS receiver and the extended Kalman Filter 

algorithm to generate optimal position estimated for the robots. 

 

Figure 17.  Pioneer UGV  
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2. Camera Sensor 

A camera sensor consists of a lens, an image sensor, and other supporting 

electronic components. The camera lens provides clear images of the object/scene for the 

camera sensor. The size of the camera lens will determine the field of view of the video 

feed. The image sensor receives light through the camera lens and convert the 

object/scene information into an image. The following sections provide a list of different 

types of camera sensors: 

a. Web Camera 

A web camera (see Figure 18) is a digital video camera that streams real-time 

high definition (HD) resolution (up to 1920 x 1080 pixels) video via universal serial bus 

(USB) connection to a computer. The web camera is commonly used for video calling 

over an Internet connection, even though it is capable to be used for security system 

purposes. It is a simple and cheap device that can easily be set up by any consumer. 

However, it has limited camera features such as adjustment of video resolution, shutter 

speed and sensitivity noise ratio. In addition, there is also distance limitation between the 

web camera and the computer due to the USB cable. 

 

Figure 18.  Sample of Web Camera. Source: Logitech (2017).  

https://en.wikipedia.org/wiki/Image_sensor
http://www.google.com.sg/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiUhKLe4qPVAhWnrFQKHXYyA-0QjRwIBw&url=http://www.logitech.com/en-us/product/hd-pro-webcam-c920&psig=AFQjCNEdT2OLeh0Tn_oarlwwG-zKcfUKlQ&ust=1501049351356105
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b. Network Camera 

A network camera also known as an IP camera (see Figure 19), is also a digital 

video camera, but it has its own IP address like a network device. It can be connected to a 

network system by physical network cable or by a wireless network connection. It is 

unlike the web camera which can only be connected to a computer by USB connection. 

The web camera can only operate with installed software on a computer, whereas the 

network camera operates like a web server. Operators can access the web browser via 

Hypertext Transfer Protocol (HTTP). The web browser allows the system administrator 

to adjust the video resolution from video graphics array (VGA) (640 x 480 pixels) to HD 

(1920 x 1080 pixels) video resolution, shutter speed and sensitive noise ratio. The 

adjustment depends on the availability of network throughput for streaming high video 

resolution. 

 

Figure 19.  Network Camera. Source: D-Link (2017). 
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Although the network camera is more complex and requires basic technical 

knowledge, it offers more features and better image quality. The cost of network cameras 

will be higher than the web camera. 

In this research, Ai-Ball is selected for being an exceptionally small wireless 

network camera that can be mounted on UGV with limited space (See Figure 20). The 

design of the camera can easily blend into the UGV for discreet surveillance. The camera 

is capable of streaming live video feed wirelessly and capture image for object detection 

and recognition. Figure 20 shows the picture of an Ai-Ball mounted on the UGV. 

 

Figure 20.  Camera Sensor Ai-Ball  
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The key performance parameters (KPPs) specification of the Ai-Ball camera are 

listed in Table 4. 

 Key Performance Parameters (KPPs) Source: Ai-Ball (2017). Table 4.  

Ai-Ball Specification 
Video Resolution VGA 640x480, QVGA 320x240, 

QQVGA 160x120, up to 30fp 

View Angle 60 degree 

Wireless Interface IEEE 802.11b/g 2.4GHz ISM Band 

Wireless Security WEP 64/128, WPA, WPA2 

Wireless Range •   Infrastructure: 20m (Typical)  

•   Adhoc: 7.5m (Typical)  

Dimension 30mm(Diameter) x 35mm(L)  

Weight 100g 

Power Supply •   Battery operated  

•   Voltage: 3.0V  

•   Power: 750mAH (CR2)  

•   Current consumption: 320mA (typical); 

350mA (maximum) 

 

B. SOFTWARE  

Figure 21 depicts the software component and software functional flow diagram 

for the UGV. Ubuntu 14.04 was the operating system software for the remote 

workstation, and it connects wirelessly to the UGV via a wireless router. Matlab was used 

to develop and run the source code for UGV control and other functionalities. The Matlab 

communicates with ROS to command and control the UGV. The details of the software 

component will be discussed further in the following sub-section. 
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Figure 21.  Software Functional Flow Diagram 

1. MATLAB 2016a 

The Matlab is the platform utilized to develop the source code for the robotic 

control and deep-learning algorithm. In addition, the Matlab has Robotics System 

Toolbox that provides the support to interface with ROS and ROS interface.  

2. Ubuntu 14.04 

One of many distributions of Linux for personal computers and other Internet of 

Things (IOT) devices. It is a simplified software distribution that is well integrated with 

ROS. In this research, the Ubuntu is the operating software that interface with both 

MATLAB and ROS. MATLAB shall communicates with the ROS network wirelessly 

using Ubuntu wireless interface.  

3. Robot Operating System Indigo Igloo (ROS) 

Robot Operating System (ROS) is a software development platform for 

developers to create source code for robot command and control. The software was 

originally developed at Stanford AI Lab and is currently maintained by Willow Garage. It 

offers software libraries and tools to help a software developer build a software 

application for robot. It acts as a middleware that provide inter-process communication 

by enabling programs (Nodes) to communicate. 
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IV. EXPERIMENTAL RESULTS 

Three test scenarios were conducted in this thesis research to verify and validate 

the image classification accuracy through the developed deep-learning algorithm. The 

three test scenarios are identification of a single object which consists of both indoor and 

outdoor environment tests, identification of multiple homogeneous objects, and 

identification of multiple heterogeneous objects. In each test scenario, the system shall 

perform 10 test cycle runs for data collection. The purpose of 10 test cycle runs was to 

test, verify and validate that the system can consistently provide accurate results. This 

section starts from showing and discussing the results of each of the aforementioned test 

scenarios and concludes with a discussion at some of the challenges faced during the 

experiment tests. 

A. IDENTIFICATION OF A SINGLE OBJECT 

There were two tests conducted on identification of a single object. The first test 

was a chair along a walkway at an indoor environment. While the second test was a table 

at an outdoor environment. The Pioneer UGV was navigated to the target of interest to 

perform image classification test. The sample pictures of an identified single object in 

indoor environment are shown in Figure 22. 

1. Indoor Environment Test on Single Object 

 

Figure 22.  Indoor Environment Test on Single Object—Chair 
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Table 5 summarizes the results of the indoor environment test conducted on a 

single object. It shows that the percentage of correct identification of the system 

improved with the increase in number of training images. The system was able to achieve 

100% success in identifying the object correctly when one of the training images was 

replaced by an image of the actual scene, the chair. The results from Table 6 to Table 8 

detail the three test cases such as dataset with 20 training images, dataset with original 20 

plus new 20 training images and dataset with 39 training images from above plus 1 image 

of the actual scene that were conducted. The tables consist of confidence level, results 

and pass/fail. Confidence level is the calculation on how confidence the deep-learning 

algorithm recognizing the object correctly. The results are classification of image by the 

deep-learning software algorithm and finally the pass/fail is to show if the software has 

recognize the object correctly. When the object is recognize correctly, the table will be 

updated as pass. While fail will be given to image been recognized wrongly. 
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 Summary Table of Percentage of Correct Identification on Indoor Table 5.  
Environment Test on a Single Object  

Test Case Percentage of Correct 
Identifications 

Dataset with 20 training images 30% 
Dataset with original 20 plus new 20 training images 80% 
Dataset with 39 training images from above plus 1 image of the actual scene   100% 

 Results of Indoor Environment Test on a Single Object with 20 Table 6.  
Training Images in Dataset 

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.90 0.93 0.94 0.86 0.87 0.91 0.93 0.96 0.89 0.93 
Results Dog Table Table Chair Table Chair Table Chair Table Table 
Pass / Fail Fail Fail Fail Pass Fail Pass Fail Pass Fail Fail 

 Results of Indoor Environment Test on a Single Object with Table 7.  
Original 20 Plus New 20 Training Images in Dataset 

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.95 0.94 0.92 0.94 0.93 0.92 0.94 0.92 0.95 0.91 
Results Chair Chair Chair Chair Table  Car  Chair Chair Chair Chair 
Pass / Fail Pass Pass Pass Pass Fail Fail Pass Pass Pass Pass 

 Results of Indoor Environment Test on a Single Object with 39 Table 8.  
Training Images from the above Plus 1 Image of the Actual Scene in 

the Dataset 

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.90 0.96 0.93 0.91 0.91 0.95 0.94 0.96 0.91 0.90 
Results Chair Chair Chair Chair Chair Chair Chair Chair Chair Chair 
Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass 
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2. Outdoor Environment Test on Single Object 

The second test on identification of a single object was conducted at an outdoor 

environment and the target was a table. It is more challenging to conduct an outdoor test 

due to several factors such as lighting, moving background objects, shadows, and sun 

glare. The Pioneer UGV was navigated to the target of interest to conduct the image 

classification test. The sample pictures of an identified single object in outdoor 

environment are shown in Figure 23. 

 

Figure 23.  Outdoor Environment Test on Single Object—Table 

Table 9 summarizes the results of the outdoor environment test conducted on a 

single object. The system was able to achieve 80% success in identifying the single 

object at outdoor environment correctly when one of the training images was replaced by 

an image of the actual scene, the table. Detail results of the three test cases such as 

dataset with 20 training images, dataset with original 20 plus new 20 training images and 

dataset with 39 training images from above plus 1 image of the actual scene that were 

conducted are shown from Table 10 to Table 12.   
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 Summary Table of Percentage of Correct Identification on Outdoor Table 9.  
Environment Test on a Single Object 

Test Case Percentage of Correct 
Identifications 

Dataset with 20 training images 70% 
Dataset with original 20 plus new 20 training images 70% 
Dataset with 39 training images from above plus 1 image of the actual scene 
image  

80% 

 Results of Outdoor Environment Test on a Single Object with 20 Table 10.  
Training Images in Dataset 

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.93 0.86 0.91 0.89 0.90 0.86 0.91 0.87 0.90 0.90 
Results table table table table table Chair Chair table table Chair 
Pass / Fail Pass Pass Pass Pass Pass Fail Fail Pass Pass Fail 

 Results of Outdoor Environment Test on a Single Object with Table 11.  
Original 20 Plus New 20 Training Images in Dataset 

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.96 0.92 0.89 0.93 0.93 0.88 0.94 0.87 0.94 0.89 
Results table table Chair table table table Chair Chair table table 
Pass / Fail Pass Pass Fail Pass Pass Pass Fail Fail Pass Pass 

 Results of Outdoor Environment Test on a Single Object with 39 Table 12.  
Training Images from above Plus 1 Image of the Actual Scene in 

Dataset  

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.91 0.91 0.91 0.92 0.91 0.90 0.89 0.84 0.91 0.90 
Results table table table table table Chair Chair table table table 
Pass / Fail Pass Pass Pass Pass Pass Fail Fail Pass Pass Pass 
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B. IDENTIFICATION OF MULTIPLE HOMOGENEOUS OBJECTS 

Identification of multiple homogeneous objects were conducted at an indoor 

environment and the target was two chairs within the field of view in the on-board 

camera. The Pioneer UGV was navigated to the target of interest to perform image 

classification test. The sample pictures of identified multiple homogeneous objects are 

shown in Figure 24. 

 

Figure 24.  Identification of Multiple Homogeneous Objects 

Table 13 summarizes the results of test conducted on multiple homogeneous 

object. Comparing with the earlier test scenario, the system has obtained slightly better 

results in dataset with 20 training images. Although there is a slight reduction in the 

percentage of correct identification on the dataset with 40 training images, the system 

was able to achieve 100% success in identifying the multiple homogeneous objects 

correctly when one of the training images was replaced by an image of the actual scene, 

the two chairs. Detail results of the three test cases such as dataset with 20 training 

images, dataset with original 20 plus new 20 training images and dataset with 39 training 

images from above plus 1 image of the actual scene that were conducted are shown from 

Table 14 to Table 16.  
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 Summary Table of Percentage of Correct Identification on Table 13.  
Multiple Homogeneous Objects 

Test Case Percentage of Correct 
Identifications 

Dataset with 20 training images 50% 
Dataset with original 20 plus new 20 training images 60% 
Dataset with 39 training images from above plus 1 image of the actual scene 
image  

100% 

 Test Results of Multiple Homogeneous Objects with 20 Training Table 14.  
Images in Dataset 

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.89 0.89 0.84 0.94 0.93 0.86 0.89 0.93 0.91 0.91 
Results Chair Table Chair Chair Table Table Table Table Chair Chair 
Pass / Fail Pass Fail Pass Pass Fail Fail Fail Fail Pass Pass 

 Test Results on Multiple Homogeneous Objects with Original 20 Table 15.  
Plus New 20 Training Images in Dataset 

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.94 0.94 0.92 0.88 0.89 0.94 0.91 0.97 0.94 0.92 
Results Chair Table Chair Chair Table Chair Table Table Chair Chair 
Pass / Fail Pass Fail Pass Pass Fail Pass Fail Fail Pass Pass 

 Test Results on Multiple Homogeneous Objects with 39 Training Table 16.  
Images from above Plus 1 Image from the Actual Scene in Dataset 

 
Test Run 

 
1 2 3 4 5 6 7 8 9 10 

Confidence level 0.93 0.94 0.94 0.89 0.89 0.89 0.96 0.91 0.97 0.92 
Results Chair Chair Chair Chair Chair Chair Chair Chair Chair Chair 
Pass / Fail Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass 
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C. IDENTIFICATION OF MULTIPLE HETEROGENEOUS OBJECTS 

Identification of multiple heterogeneous objects was conducted outdoors and the 

Pioneer UGV was expected to navigate to the three selected targets (Table, Car, and 

Chair) at pre-defined location to perform the test. The setup of predefined targets’ 

location and pioneer UGV navigation path are shown in Figure 25. And the sample 

pictures of identified multiple heterogeneous objects at predefined positions are shown 

Figure 26. 

 

Figure 25.  Setup of Predefined Targets’ Location and Pioneer UGV 
Navigation Route 
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Figure 26.  Recognized Images of Targets at Predefined Position  

Table 17 summarizes the results of test conducted on multiple heterogeneous 

object. The system has successfully demonstrated its capability in recognizing the pre-

defined targets. The system was able to achieve 93% in identifying the multiple 

heterogeneous objects correctly on test case with 39 training images from earlier dataset 

plus 1 image of the actual scene. Detail results of the three test cases such as dataset with 

20 training images, dataset with original 20 plus new 20 training images and dataset with 

39 training images from above plus 1 image of the actual scene that were conducted are 

shown from Table 18 to Table 20.  

 Summary Table of Percentage of Correct Identification on Table 17.  
Multiple Heterogeneous Objects 

Test Case Percentage of Correct 
Identifications 

Dataset with 20 training images 70% 
Dataset with original 20 plus new 20 training images 87% 
Dataset with 39 training images from above plus 1 image of the 
actual scene   

93% 
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 Test Results on Multiple Heterogeneous Objects with 20 Training Images in Dataset Table 18.  
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 Test Results on Multiple Heterogeneous Objects with Original 20 Plus Table 19.  
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 Test Results on Multiple Heterogeneous Objects with 39 Training Images from the above Plus 1 Image Table 20.  
of the Actual Scene in Dataset 
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D. CHALLENGES 

During the course of experimental testing, there were some challenges faced 

which affect the outdoor test due to several factors such as lighting, moving background 

objects, shadows, and sun glare. The below figures show different types of challenges 

faced during the test process. 

1. Direct Sunlight Glare 

Typically, direct sunlight glare tends to happen right after sun rises and before 

sunset. The sunlight glare affects the field of view of the camera. As shown in Figure 27, 

the sunlight glare blocks out most parts of the chair which affected the system; it 

identified it as a table instead. To recognize the object correctly, the UGV needs to 

maneuver to a position to avoid the sunlight glare. 

 

Figure 27.  Sample of Picture Showing Direct Sunlight Glare Interfering with 
Detection Process 
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2. Shadow 

The movement of the sun will cast a shadow of an object at different directions at 

different times of the day. A shadow of the object of interest may cause the system to 

interpret it as part of the object. Based on Figure 28, the table was recognized as a chair 

while the car was recognized as a dog. 

 

Figure 28.  Samples of Pictures Showing Shadow Interfering with 
Detection Process 
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V. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSION 

The aim of this thesis was to study the applicability of deep-learning technology 

for relative object-based navigation. The transfer learning approach technique was 

deployed with Alexnet as the pretrained network to improve the image recognition 

accuracy. Four types of different test scenarios were conducted to verify and validate that 

the system is able to detect and identify an object correctly. For example, based on the ten 

the results of all the test scenarios are summarized in Table 21.  

 Summary of the Percentage of Correct Identification on the Four Table 21.  
Types of Test Scenarios 

 
Percentage of Correct Identifications 

Test Case Chair 
Two 

Chairs Table Table/Car/Chair 
Dataset with 20 training images 30% 50% 70% 70% 
Dataset with original 20 plus new 20 
training images 80% 60% 70% 87% 

Dataset with 39 training images from 
above plus 1 image of the actual scene   100% 100% 80% 93% 

 

Based on the results, the dataset with 39 training images from above plus 1 image 

of the actual scene obtained the overall best results. The good results could be attributed 

to having an actual image of the targets in the dataset. This thesis demonstrates that it 

addresses the earlier research questions on using deep-learning technology reliably 

detecting and recognizing static objects and it help the operators to make better decisions 

over the control of UGV navigation. 
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B. RECOMMENDATIONS 

The list of recommendations for future work that can be carried out to expand on 

the work in this thesis include obstacle avoidance and target detection software. 

Specifically, with the success in the earlier test scenario, it is recommended to 

further explore obstacle avoidance using deep-learning technique. This implementation 

would enable UGV to navigate autonomously without knocking into an object. The deep-

learning technique shall assist the Pioneer UGV system to recognize the object and 

determine best route to avoid the obstacle. 

Cascade-video detector was developed to assist the Pioneer UGV system on target 

identification. The techniques developed in this thesis happened to be sensitive to 

detecting the objects at different scales. Besides that, it requires huge number of positive 

and negative training images. The software only allows uploading of one XML file (of a 

specific target) in the Matlab software code. Therefore, it is recommended to explore 

alternate Matlab software code such as faster RCNN to improve the accuracy of the 

system (Redmon and Farhadi 2016). 
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